3D chip-stacking technology with through-silicon vias and low-volume lead-free interconnections
نویسندگان
چکیده
technology with through-silicon vias and low-volume leadfree interconnections K. Sakuma P. S. Andry C. K. Tsang S. L. Wright B. Dang C. S. Patel B. C. Webb J. Maria E. J. Sprogis S. K. Kang R. J. Polastre R. R. Horton J. U. Knickerbocker Three-dimensional (3D) integration using through-silicon vias (TSVs) and low-volume lead-free solder interconnects allows the formation of high signal bandwidth, fine pitch, and short-distance interconnections in stacked dies. There are several approaches for 3D chip stacking including chip to chip, chip to wafer, and wafer to wafer. Chip-to-chip integration and chip-to-wafer integration offer the ability to stack known good dies, which can lead to higher yields without integrated redundancy. In the future, with structure and process optimization, wafer-to-wafer integration may provide an ultimate solution for the highest manufacturing throughput assuming a high yield and minimal loss of good dies and wafers. In the near term, chip-to-chip and chip-to-wafer integration may offer high yield, high flexibility, and high performance with added timeto-market advantages. In this work, results are reported for 3D integration after using a chip-to-wafer assembly process using 3D chip-stacking technology and fine-pitch interconnects with leadfree solder. Stacks of up to six dies were assembled and characterized using lead-free solder interconnections that were less than 6 lm in height. The average resistance of the TSV including the lead-free solder interconnect was as low as 21 mX.
منابع مشابه
The effects of etching and deposition on the performance and stress evolution of open through silicon vias
In order to embed more functionality and performance into the same design space, 3D IC integration technology is one of the routes towards further miniaturization of ICs and consequently, printed circuit boards. 3D TSV (through silicon via) stacking of wafers or dies requires die-to-die interconnections to conduct electricity and heat. Typically micro bump contacts with solder (e.g. AgSn) and C...
متن کاملTransition from flip chip solder joint to 3D IC microbump: Its effect on microstructure anisotropy
As microelectronic industry develops 3D IC on the basis of through-Si-vias (TSV) technology, the processing and reliability of microbumps, which are used to interconnect the stacking chips, is being actively investigated. Due to the reduction in size of microbumps, the diameter is about one order of magnitude smaller than that of flip chip solder joints, and the volume is 1000 times smaller. It...
متن کاملResource Management Design in 3D-Stacked Multicore Systems for Improving Energy Efficiency
Technology scaling and increasing power densities have led to a transition from single-core to multi-core processors, and the trend is now moving towards many-core architectures. Hundreds of millions of transistors can now be integrated on a single chip, however, they cannot be fully exploited due to interconnect/memory latency, power consumption, and yield related challenges. 3D integration is...
متن کاملIntegration of Electrografted Layers for the Metallization of Deep Through Silicon Vias
After many years as a hypothetical possibility, 3D integrated circuits (3D IC) stacking has emerged as a potential key enabler for maintaining semiconductor performance trends. Implementing 3D, however, will almost certainly require development of through-silicon vias (TSVs), which in the past few years have been elevated by the semiconductor industry to the status of a crucial mainstream techn...
متن کاملAn Architecture for Low-Power Real Time Image Analysis Using 3D Silicon Technology
The technology to build highly integrated 3-dimensional computational image sensors by stacking and interconnecting layers of 2-dimensional silicon ICs is being developed. Unlike multi-chip module (MCM-V) packaging, in which interconnect lines are brought to the periphery of a chip stack to achieve vertical integration, this new technology allows virtually unrestricted placement of vertical via...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IBM Journal of Research and Development
دوره 52 شماره
صفحات -
تاریخ انتشار 2008